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HYBRID UPWIND SPLITTING (HUS)
BY A FIELD-BY-FIELD DECOMPOSITION

Frédéric Coquel]L and Meng-Sing Liou?

Abstract

We introduce and develop in this paper a new approach for upwind biasing : the Hybrid
Upwind Splitting (HUS) method. This original procedure is based on a suitable hybridiza-
tion of current prominent Fluz Vector Splitting (FVS) and Fluz Difference Splitting (FDS)
methods. The HUS method is designed to naturally combine the respective strengths of
the above methods while excluding their main deficiencies. Specifically, the HUS strategy
vields a family of upwind methods that exhibit the robustness of FVS schemes in the cap-
ture of nonlinear waves and the accuracy of some FDS schemes in the resolution of linear
waves.

We give a detailed construction of the HUS methods following a general and systematic
procedure directly performed at the basic level of the Field by Field (i.e. waves) decom-
position involved in FDS methods. For such a given decomposition, each field is endowed
either with FVS or FDS numerical fluxes, depending on the nonlinear nature of the field
under consideration. Such a design principle is made possible thanks to the introduction
of a convenient formalism that provides us with a unified framework for upwind methods.

The HUS methods we propose bring significant improvements over current methods
in terms of accuracy and robustness. They yield entropy-satisfying approximate solutions
as they are strongly supported in numerical experiments. Field by field hybrid numerical
fluxes also achieve fairly simple and ezplicit expressions and hence require a computational
effort between that of the FVS and FDS.

Several numerical experiments ranging from stiff 1D shock-tube to high speed viscous
flows problems are displayed, intending to illustrate the benefits of the present approach.

We shall assess in particular the relevance of our HUS schemes to viscous flow calculations.

+ Institute for Computational Mechanics in Propulsion (ICOMP), NASA Lewis Re-
search Center, Cleveland, OH 44135; Permanent address: Theoretical Aerodynamics

Branch 1, ONERA, B.P 72 92322 Chatillon Cedex, France.
i Internal Fluid Mechanics Division, NASA Lewis Research Center, Cleveland, OH

44135.



Introduction

Over the past decades, the research effort in computational fluid dynamics (CFD)
has resulted in several prominent and widely used schemes. In particular, two distinct
and complementary approaches for upwind biasing have been proposed and investigated,
namely the Flux Vector and Flux Difference Splitting methods (FVS and FDS respec-
tively). Each has demonstrated fairly interesting capabilities, inherited from their design
principle and assumptions, which are manifested in the numerical calculation in the form of
either robustness or accuracy. In other words, the design principle directly determines the
effectiveness of the method; abundant in the literature are papers reporting their successes

and failures in calculations.

The first approach (FVS) has received attention mainly for the Euler equations.
Harten et al. [22] referred it as the Boltzmann approach for its formal links with the
gas dynamic setting where the flow is modeled by a set of pseudo-particles evolving freely
according to a collisionless Boltzmann equation. As a consequence of the resulting mix-
ing of particles, FVS methods suffer from a constitutive lack of resolution for linear waves
[50] (contact discontinuities), thereby making them irrelevant candidates for Navier-Stokes
calculations since the viscous layer behaves in the limit like a contact discontinuity. On
the other hand, FVS methods have demonstrated their ability to capture intense and only

admissible nonlinear waves (such as shock waves).

The second approach (FDS), generally classified as approximate Riemann solvers, has
been developed primarily to provide approximate information regarding wave speeds and
amplitudes in the Riemann problem. Two most outstanding FDS methods are proposed by
Osher [35] and Roe [45]. These FDS methods specifically provide a direct representation
of the linearly degenerate field with which the contact discontinuity is associated. Since
they both, by construction, reproduce the exact solution for a single stationary contact
discontinuity, they become accurate and relevant candidates for solving the Navier-Stokes
(at least the steady) equations. Compared to Godunov’s exact solution of the Riemann
problem [17], Osher’s scheme replaces the shock by an overturned compression wave and
thus makes an explicit computation of numerical fluxes possible, but at the expense of
reducing the robustness. Jacob [24] reported a lack of robustness in the Osher splitting for
capturing a strong detached shock.

More drastic simplification is used in the Roe splitting, rendering it an even cheaper
procedure in which the transonic expansion is replaced by a shock, but with the conse-
quence of allowing a physically inadmissible expansion shock. Quirk [41] recently sum-

marized some failings encounterred by using the Roe splitting in calculating nonlinear
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waves.

Therefore, FVS and FDS approaches do not yield the same advantages and drawbacks,
but they clearly complement each other.

These observations have prompted some recent works in implementing some switches
directly aimed at choosing either a FVS or a FDS method according to the local smoothness
of the solution but at the expense of tunable parameters and of a discontinuous method
(see [41] for a related idea).

Up to our knowledge, the first scheme combining both FV3 and FDS features into a
single flux for the sake of robustness and accuracy is the Advection Upstream Splitting
Method (AUSM) introduced by Liou and Steffen [30]. This original splitting is indeed
based on the appropriate definition of a cell-face advection Mach number. Liou [32] has
recently proposed a convenient framework for the development of a family of schemes,
referred to as AUSM+4, which further improves AUSM while preserving its advantageous
features. Blending flux vector- and difference-splittings in the AUSM, Wada and Liou [51]
have achieved a promising scheme, termed AUSMDYV, which also cures difficulties found

in each constituent scheme.

In this paper, we propose another approach for upwind splitting : namely the field
by field Hybrid Upwind Splitting. The formalism blends in a natural way the comple-
men properties exhibited by FVS and FDS methods. Indeed, the procedure we propose
yields upwind methods built to share the very robustness of FVS schemes in the capture of
nonlinear waves and the accuracy of some FDS schemes in the resolution of linear waves.
These new schemes are derived following a general hybridization technique directly per-
formed at the basic level of the field by field decomposition involved in FDS methods. In

particular, we stress that our hybrid upwind splitting is free of tunable parameters.

The format of this paper is as follows. In Section 2, we introduce a convenient formal-
ism for upwind methods that provides us with a “unified” framework for upwinding. Our
framework turns out to be sufficiently large to recover the FDS methods and at the same
time the FVS ones. Furthermore, its formalism enables a natural distinction between these
two approaches. Roughly speaking, we shall see in what sense FVS methods completely
ignore the concept of field by field decomposition which is precisely the root of all the FDS
methods. This rather obvious distinction is revisited here for its deep consequences, lead-
ing to in particular a very natural guideline for the design of our Hybrid Upwind Splitting
methods.



Derived in full details in Section 3, these new methods fall into the framework we
have developped in Section 2. Some of their features will be analyzed there. Section 4 is
especially devoted to the applications to the Euler equations. Different HUS methods of
interest are given an explicit and self-contained form of expression. Finally, we present in
Section 5 several numerical experiments directly devoted to measuring the relevance of the

HUS methods proposed hereinafter.

I. Notation

In this paper, we consider numerical approximations of weak solutions to the following
Cauchy problem for nonlinear hyperbolic systems of conservation laws

Ou  Of(u)
S+ 5220, t>0,c€R, (1.1)

u(0, z) = up(x). (1.2)

Here, u(t,z) belongs to a phase space { € R? and f denotes a smooth flux function,
f: U — R?, whose Jacobian matrix A(u) = df(u) is assumed to be diagonalizable with
p real eigenvalues Ag(u), 1 < k < p. As is well known, this problem in general does
not admit smooth solutions so that weak solutions in the sense of distributions must
be considered. Moreover, an entropy-satisfying condition must be added to select the
physically relevant (or entropy) weak solutions. We refer to Lax [28] and to Godlewsky
and Raviart [16] for precise statements and detailed results.

We shall assume in the sequel that (1.1) is strictly hyperbolic, that is the Jacobian
matrix A(u) admits p distinct eigenvalues. The right eigenvectors, corresponding to eigen-

values arranged in increasing order, are denoted by

ri(u), ra(u), ..., rp(u), (1.3)

while
T w), T(w), .y 1T(u), (14)

refer to the associated left eigenvectors.
The mapping u € U — rx(u) is called the kth field. Throughout this paper, we shall
assume that all the fields are either genuinely nonlinear in the sense of Lax [28], i.e. (after

a suitable normalization)
VAi(u) -re(u) =1, Yuel, (1.5a)
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or linearly degenerate (see [28]), i.e.
VAr(u) - re(u)=0, Yuel. (1.5b)

The following definitions, although standard, will be of constant use in the sequel. If the
kth field is genuinely nonlinear, a k shock wave moving at speed o is defined to be a

discontinuity of u subject to the following Rankine-Hugoniot condition

o(ur —ur) = (f(ur) — f(ur)). (1.6)
This k shock is said, after Lax [28], to be admissible if

Ae(ug) — o > 0> Ae(ur) = . (1.7)

Associated with the kth genuinely nonlinear field, a k rarefaction wave is defined to be a

solution of the following ordinary differential equation in the phase space U

% =rr(u(s)), s€R. (1.8)
In view of requirement (1.5a), note that the parameter s in (1.8) is in fact restricted to
an open subset of R where the mapping s — Ar(u(s)) strictly increases along the integral
curve of (1.8) oriented by r.

As for the linearly degenerate field, a k contact discontinuity is defined to be a dis-
continuity that satisfies (1.6) as well but with o = A\x(ur) = Ae(ur), or a kth wave along
which the differential equation (1.8) is trivially satisfied.

In the following, we shall describe numerical approximations to weak solutions of (1.1).
Let h and k, be respectively the time and space steps. We consider piecewise constant

approximate solutions u® : Ry x R — U € RP;ie. fort € [nh,(n +1)R){, n €N,

1
wh(ta) =ul, z€[(i-3)ha i+ %)h,[, icz, (1.9)
with
1 G+Hh
u? = —/ up(z)dz, € Z. (1.10)
ha Ji-1ih. |
For n > 1, (u™*!)icz is defined by the following 3-point explicit scheme in conservation
form "
uftl = uf — h_,( iy —fiiy) 1E€Z (1.11)

Here, the numerical flux defined by

fi+% = f(u?,u?+1) (1.12)
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is assumed to satisfy the following smoothness and consistency conditions :

f:U xU — RP is a locally Lipschitz — continuous function (1.13)
flu,u) =f(u), Vuel. (1.14)

By the well known theorem of Lax and Wendroff (see [20]), if the limits of approximate
solutions (1.9), as A — 0, exist a.e. in the sense of bounded L}, convergence and provided
that the assumptions (1.13)-(1.14) are satisfied, then these limits are weak solutions of

(1.1). We refer to [16] for an exhaustive presentation and the updated references therein.

II. A General Setting for Upwind Splitting Methods

In this section, we introduce a convenient formalism for upwind methods. This formal-
ism enables the classical FDS and FVS methods to be re-expressed in the same framework
and furthermore it encompasses a new and general concept for upwind biasing (see Section
II).

In the sequel, we shall focus our attention on upwind schemes in the sense of the
framework we now introduce. This framework is based on the fruitful notion of paths
introduced by Dal Maso, Le Floch and Murat [9] to deal with nonconservative products
arising in a hyperbolic system in nonconservation form. Following their definition, we
consider a fixed family of paths ® in U, that is amap ®: [0,1] xU xU — U € R? assumed

to satisfy the following properties of consistency and smoothness,
®(0;ur,ur) =ur and ®(;ur,ur) =ur, for any ur andugrinl, (2.1a)

®(s;u,u) =u, for anyuinl and any s in [0,1], (2.18)

and

For every bounded set K in U, there ezists a constant C > 0 such that

for any states (up,ur) end (vy,vR) in K :

|B<I>(s; ur,uR) 3 0%(s;vr,vR)
Os Js

| <C |(ur—ur)— (vr —vL)|, a.e. sin [0,1](2.1c)
As an immediate consequence of (2.1c), we have for every u; and ug in K
Q .
| ?-%’Q I<KClur—url|, aesinl0,1]. (2.1d)
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We shall need also in the sequel to consider matrix-valued functions Bt and B~ : U x
[0,1] — Mat(R?,RF) such that :

Bt(u,s) (respectively B~ (u,s)) is diagonalizable with only
real and nonnegative A (u,s) (resp. real and nonpositive At(u,s))

eigenvalues for all u in U and any given s in {0,1 f; (2.2q)

For every bounded set K in U, there ezists a constant C > 0 such that,

for all v and v in K, a.e. s in [0,1],

1B (w,s)| £C, 1IB~(w,9)| £ C; (2.26)
1B+ (u,s) — BY(v,s)|| < Clu—v|, [|B (w,8) =B (v,)l| S Clu—v|. (22¢)

Based on a family of paths & and two matrix-valued functions B%, we propose the following

framework for upwind biasing.

Definition and Proposition 1
Let ® be o fized family of paths in the sense of (2.1) and let Bt and B~ be two
matriz-velued functions satisfying (2.2). ® and B are assumed to satisfy the following

compatibility condition

/(; (B+(<I>(s;uL,uR), s) + B7(®(s; uL,uR),s)> %(%—;bﬂ%—)ds = f(ug) — f(ur). (2.3)

Under the CFL-like condition
+ 1
2 max NEw o) < 5, (2.4)
<p 2

let us now consider the following two averaging

. on ' __ 9®(s;ur,u

tr(ur,ur) = up — e B (Q(s;uL,uR),s)———(—bsi—i)-ds, (2.5a)
z Jo

- 2n [1 0®(s;ur,u

tp(urL,ur) = UR — W B+(<I>(s;uL,uR),s)—(—a—‘:'—i)ds. (2.5b)
z Jo

We define o (&; Bt) scheme as follows :

n 1 ~ n n ~ n n
“i+1 = 5( r(ui_1,u; )+ uL(“i 1ui+1))' (2-6)
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Assertion. This definition yields a consistent 3-point scheme in conservation form for

which the associated numerical fluz 1s written :

f(ur,ur) = %(f(u,,) + f(ur)—

/0 : {B*(@(s;u1,ur),s) - B (8(s3uz,ur), s)} Qqs—;;;”—ui)ds). (2.7)

Remarks

2.1- The averaging (2.5a) may be understood as the integral conservation law applied
over the rectangle (—k./2,0) x (0, h) to the approximate solution of a specified Riemann
problem (see the CFL-like condition (2.4)). Conversely, the averaging (2.5b) has the same
physical picture but using the rectangle (0, hz/2) x (0, k). As a consequence, formula (2.6)
can be seen as the averaging under the CFL condition (2.4) of two neighboring and non-
interacting half approximate-Riemann solutions. Such a formal interpretation obviously
applies to the FDS methods (we refer the reader to Remark 2.6 concerning the FVS

schemes).

2.2- Requirement (2.3) is an essential compatibility condition to be met by the family
of paths ® and the B¥ functions with respect to the problem (1.1). Indeed, summing
(2.5a) and (2.5b) gives :

0%(s;ur,ur)
s ds. (2.8a)

1, . 1 hof? -
§(uL +1ig) = §(uL +ug) — 71_/ {B* + B~ }(®(s;ur,ur),s)
z Jo
This relation can be thought of as applying the integral conservation law over the rectangle
(—hz/2,h:/2)x (0, k) to the approximate solution quoted in the above Remark 2.1. Under
the CFL condition (2.4), the compatibility requirement (2.3) clearly enforces the above
averaging to coincide with the relevant one provided by the Godunov exact Riemann

solver :

(80 +in) = 3wz + un) = 5= (F(ur) - Fur). (2:89)

In view of (2.8), the compatibility condition (2.3) might be also read as a consistency re-
quirement with respect to (1.1). In fact, (2.3) yields a stronger requirement for consistency
than the usual condition stated in (1.14). In particular, {2.3) is responsible for the upwind
nature of the methods under consideration as stated in (2.9) below. Section III will give
examples of numerical flux functions under the form (2.7) that are Lipschitz continuous
and consistent with f in the sense of {1.14) but such that (2.3) is not satisfied.
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2.3- For a given s in [0,1], neither B¥(.,s) nor B7(.,s) are assumed to be Jacobian
matrices. Therefore, the vector-valued integrals in (2.5) and (2.7) are in general path
dependent.

According to Definition 1, when all the signal velocities associated with the numerical
flux f(ur,ur) are nonnegative, i.e. B” identically vanishes along the path ®(;uz,u R);
then from the compatibility condition (2.3), we easily deduce that the numerical flux-

function (2.7) must reduce to :

flur,ur) = f(ur)- (2.9a)

On the other hand, when all the signal velocities associated with the numerical flux
f(ur,ur) are nonpositive; 1.e. B? identically vanishes along the path ®(.;ur,u Rr) then

f(ur,ur) = f(ur). (2.9b)
As a consequence, we state

Corollary 1
Any given (®; BE) scheme is o 3-point upstream method (1.9)-(1.12) in the sense of

(2.9).

The definition we propose meets the usual notion of upwind bias. Conversely, we do
not claim that any given consistent and conservative 3-point upstream method in the rather
vague sense of (2.9) belongs to the (®; B*) formulation. However, the examples given
below show that our formalism is quite natural and indeed sufficiently general to recover
the classical approximate Riemann solvers (such as flux difference splitting methods) as
well as the flux vector splitting methods. Moreover, this formalism enables a precise
distinction to be made between these two approaches. Roughly speaking, we shall see
that FVS methods completely ignore the concept of waves (or field by field) decomposition
which is by contrast the starting point of all the FDS methods.

Proof of the Assertion
Let us first introduce the following two functions f; and fr : U xU — RP, setting for

any uz and up in U

1 -y
fr(ur,ur) = flug) + / B‘(@(s;uL,uR),s)—aE(—szﬁds, (2.10a)
0
1 ‘u
fr(ur,ur) = f(ur) — /0 Bt (3(s;u L,uR),s)qus—’gsE’—“i)ds. (2.100)
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Equipped with (2.10a) and (2.10b), the averaging (2.5a) and (2.5b) can be rewritten under

the form

tr(ur,ur) =ug — %(fL(uL,uR) f(ur)), (2.11a)
tp(ur,ur) = ug — i—h(f(uR) fR(uL,uR)) (2.11b)

In view of the compatibility condition (2.3), we have

fr(ur,ur) = fr(ur,ur) = %(fL(uL,uR) + fr(uL,ur))
= f(ur,ur), Yur,ur €U,

so that it makes sense to use (2.7) as a numerical flux-function and owing to (2.11),
definition (2.6) clearly yields a 3-point scheme in conservation form.

We now turn to proving the local Lipschitz continuity of the flux-function (2.7). Given
a bounded set K of U, then for any (ur,ur) and (vr,vg) in K we write

f(vi,vr) — f(ur,ur) = %(f(vx) —f(ur)) + %(f(UL) — f(ur))

L[ 0%(s; vz, 9%(s;ur,
“'2‘/0 {|B|(‘I’(S;UL,vR),S)—%@—)—IBl(@(S;uL,un),s)——(—s—gsL—'i’Q}ds. (2.12)

Note that the above integral can be split into three terms according to

1 H(s- .
L+L+I=+ -;-/ IBI(8(s3 v, vm), )] T2 L vR) _ BB(si vy vm) Y 5
0

Os Os
1 ! .
i 5/ {1Bl(@(sivz,0m), ) - |B|(¢(8;uL,un),s)}2§%ist
- _/ |B|(&(s; uL,uR),s){aQ(s uSL,uR) a‘b(s;gsL,vR)}ds

Using successively the smoothness condition (2.1c) satisfied by ® and (2.2b), we obtain

the following crude estimates

\LI < C (IB¥II+1IB7II) {I(va —vi) = (vr — ur)l}
<C |vr —ugl,

and similarly,
|I3] < C |vr —ur|.
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Moreover, in view of (2.1d) and assumption (2.2c), we deduce the following bound for I>

2| £ C Ié‘[?’i]{l &(s;vr,vr) — B(s;uL,uR) I} lvr —uLl,

< C (Juz| + vrl) sxél[gogl{l &(s;vr,vr) — B(s;uL,uR) I}.
Note that for s € [0,1} :

| ®(s;vL,vr) — B(s;ur,ur) | <| (®(s;vL,vR) — vy) — (®(s;ur,ur) — ur) |+ | ve —url
< /os{a@(t;v[,,vn) _ GQ(t;uL,'u.R)

5 5 }dt|+|vL—uL|

<sC{|(va—vr)— (ur—ur)|}+|ve —ur|

<C{lvr—ur|+|ve—url}

where we have used (2.1a) and (2.1c). Therefore, there exists a constant C depending on
K such that

|f(vi,vr) — f(ur,ur)l < C{lvr —ur |+ |vL —uz 1}.

This gives the required result.
We now conclude by proving the consistency of the numerical flux (2.7) with the exact
flux-function f. Using the consistency condition (2.1b) concerning the path @, we have for

any u in U
0®(s;u,u) 0
0s o
since (2.1b) does not depend on s, so that f(u, u) = f(u). This concludes the proof. O

a.e. s in [0,1], (2.13)

We now show how the classical FDS and FVS methods can be re-expressed using the
formalism of Definition 1.

II.1 Flux Difference Splitting (FDS) Methods

Flux difference splitting methods, also referred to as approximate Riemann solvers,
achieve upstream biasing on the basis of a given field by field decomposition. Such a
decomposition intends to restore, but via a much simpler structure, some of the important
features of the Godunov exact Riemann solver. Essential among the features required to
be satisfied is the property of conservation (2.8b).

A full hierarchy of approximate Riemann solvers exists, ranging from the simplest

one with only two waves and one intermediate state [22] to the most sophisticated ones
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involving a complete set of p waves separating (p — 1) intermediate states (for instance
Roe [45], Collela-Glaz [4]). The Osher-Solomon method [35] is not strictly speaking an’
approximate Riemann solver but nevertheless clearly falls by construction into our setting.
We show below how to re-express any given approximate Riemann solver in terms of the
formalism we have introduced in Definition 1. For the sake of clarity, the derivation we
propose is performed at a formal level although it can be rigorously justified using the
notion of graph completion introduced by DalMaso, LeFloch and Murat [9]. For this
construction to be valid, we ask the physical space U« to be a convex set. Moreover,
approximate Riemann solutions are assumed to be made of only simple waves as for the
exact solution (cf. assumptions (1.5a) and (1.5b)). These assumptions indeed simplify
the derivation. Applications of this formal construction to classical approximate Riemann

solvers are postponed to Appendix 1.

By definition, a FDS method provides us with a self similar function w(.;uz,ur) : € €
R — w(&;ur,ur) € U where £ = z/t, such that w(—oo;ur,ur) =ur, w(+oojur,ur)=
upr. Generally speaking, such a function, referred as to an approximate Riemann solution,
exists provided that u;, and upg are close enough. We shall assume that the approximate
Riemann solutions under consideration are piecewise smooth except on a finite set of
points (£4)1<d<d... Where w(.;ur,ur) admits left and right limits w(ff;uL,uR). This
assumption is satisfied by the known FDS methods. Therefore, the total variation of such

solutions is bounded, i.e.

T dw

TVIZ (w(;uL,ur)) = | @(y;UL,UR) |dy < C, (2.14)

— 00
where the above gradient is understood as a vector-valued bounded measure acting on R.
For convenience, we shall adopt the strict inequality in the CFL condition (2.4), that is
to consider times ¢, ¢ < h during which the waves are strictly contained in the rectangle
] = hz/2,he/2[x[0, h]. It is thus equivalent to restricting our attention to & €] — o, +£&o
where
h:l:

fo=5- (2.15)

With this restriction, we clearly have
TViZ (w(.; ur, uR)) = TV;"&? (w(.; ur, uR))

since for all £ € R*; ¢ > &, we have w(—¢&;ur,ur) = up and w(+€;uL, ur) = ug.
For an approximate Riemann solution to be relevant, we seek w(.;ur,ur) to satisfy

the averaging consistent with the exact Godunov Riemann solver (cf. (2.8b)),

1 =2 2 1 h
T / w(—;ur,ur)dz = —(urp + ur) — —(f(ur) — f(ur)). (2.16a)
h’ —~h. /2 h 2 hx
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In view of (2.15), this requirement reduces to

+&o
/—5 w(é;ur, ur)dé = €our + uR)— (f(uR) - f(uL)). (2.16b)

Now, let C(w) =] — &, +€o[\{€d}1 <d<dm.. denote the open set of points where w(.;ur,uR)

is continuous. If we notice that we have :

dma.z

f%%(ﬁ;umtm)df + Z Ed(w(ﬁj;uL,uR) — w(f,}_;uL,uR)) —
d=1

C(w)
+&o
fo(uL + ur) — / w(;ur,ur)ds, (2.17)
—&o

then the relation (2.16) can be re-expressed as follows

dma.z

dw
/c(w)fd—g(é‘;uL,uR)df‘l' ; £a(w(€F;ur, ur) — w(€7;uL, ur)) =
+ (f(ugr) — f(ur)). (2.18)

The identity (2.18) plays in fact a central role in the derivation we perform below.
Roughly speaking; when considering (2.18), the compatibility condition (2.3) indeed sug-
gests that the physical states w(§;uL,u R), £ €] — €, +6o[, may serve as a natural variable
to define the states involved in the path ®(.;ur,ur) and that { may serve, depending on
its sign, to define either B +‘ or B~. Indeed, notice that wherever the self similar function
w(.;uL,ur) is smooth and non-constant in a neighborhood of £, then £ returns the velocity
at which the state w(£;ur,ur) propagates. Moreover, {4, d € {1,...,dmaz}, does coincide
with the velocity of the dth discontinuity separating w(é;;ur,ur) from w(EF;ur, ur)-
Our purpose in the sequel is to develop a precise construction to the above assertion in
particular regarding the treatment of the discontinuities. A geometrical picture depicted
in Fig. 1 is useful to understand the following mathematical construction, in which Fig.
la is a set of physical states displaying various wave structures.

To facilitate our construction of the framework, it is convenient to introduce the

following notation:

¢ dw
TVEe,(w) = /e | @(y;%,ua) | dy, V€ €] — o, +Eol- (2.19)
S0
Let us consider the mapping X : £ € R — X(€) € [0,1] given by

. 1
X()=—
) TV_“LE?(w)

TVEE0 (w(.;uL,ur))- (2.20)
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Note that (2.20) defines a left continuous increasing function that is discontinous across
each discontinuity shown in Fig. 1b. To make use of this discontinuous data for our
following purpose, we define a pair of functions 6% : £ € [—£p, +£o[— 6% (€) €] — &, +6o[

o) = min {w X(p) > X(6)}, (2:210)
and
O = min {u X=X ©}- (2.215)

0.10
e
_Q
2 0.08 g
n o
2 B
% 0.06 P
S g
S 0.04
I 3
® o
g 0.02 =
=

0.00

-0.4 0.0 0.4

(d)

v *tY -

Path

0.0 0.4 0.8 State space
Figure 1. Phase diagram: (a) Wave distribution, (b) Total variation, (c) 6%(¢), (d)
x{#), (¢) Y(s), and (f) Path ®.
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Note that £ — |8F(€) — 67 (£)| yields a left continuous step function, as depicted in Fig.
lc. Indeed, wherever the approximate Riemann solution w(.;ur,ur) is smooth and non-
constant in a neigborhood of &, then |§+(£) — 87(§)| is zero since g+ (&) = 67(€) = &
Otherwise, this function gives the lenght | Ix | of the interval Iy for a given k such that
€ € Iy and

w(y;ur,ur) = uk, Yp€ Ik (2.22)

Here u; denotes the kt* constant state of w(.;ur,ur). For such values of £ € I, we indeed

have

67(¢) = min¢, g+ (¢) = max{. (2-23)

For (2.22) to be valid, it is implicitly assumed that if there exist two adjacent intervals
I and Ii41, i.e if the constant states uj and uxy; are separated by a discontinuity, then
the associated lenghts | Ix | and | Ix41 | are distinct. In what follows, this assumption
is supposed to be met. (If not, we would have to modify | 1 — 8~ | using a relevant
¢-dependent factor to achieve a discontinuity from I to Ix41-)

Let us denote by & the location of the I** discontinuity of the function £ €] — &o, fo[—
|0+ — 07|(€). For completness, we introduce {i,...+1 = +£& in such a way that the set
Uimes (€, Ei41  yields a partition of [—&o,+&o[- In the sequel, J; denotes the interval
[é1, €141]. For our purpose, we now want to remove from this partition any interval J; such
that | 8+ — @~ | is zero within Ji4.

In this way, we construct an interval S of [, +&o[ using the procedure

{ Jo, if |8t — 07| is not zero within J1
So = (2.24(1)
2, otherwise;
{ Jv, if |87 — 67| is not zero within Jo
S = (2.24d)
9, otherwise.

Note that Sp and S; cannot be simultaneously empty sets. Let us denote by po the minimal

value of ¢ within Sp U S;. We then complete our construction for k < lnaz as follows

k-1
Sk =[x, pr+1[, Bk = po + Z IS1,  pr+1 = prt | Sk | (2.24c)
=0
| x|, if |6+ — 67| is not zero within Ji41
where | Sk |= (2.24d)
0, otherwise.
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Note that when | Sk [# 0, i.e. Sk # 0, then
§—&k=p—pk, Yp€ Sk, VE€ Ji (2.25)
so that Sx can be deduced from Ji by a suitable translation. Finally, we define
S = U= 5. (2.26)

We now reconstruct a new function X : p € § — X(u) € [0,1] using the following
procedure. Let us consider a given nonempty subset Sy € S, then for y € Si and its
related £ € Ji given by (2.25), we define

X(), if 6+() —67(§) =0
X(u)=19 _ i i | (2.270)
X(67(8)) + H(u)(X(6+(8)) — X(67(€)), otherwise.
Here, we have set for u € Sk
M) = g —gerge Where €= =y (227)

This step does nothing but connecting the jumps of w(.;ur,ur) with a straight line, as seen
in Fig. 1d. As a consequence, X : u € § — X () € [0,1] is a continuous strictly increasing
function. It therefore makes sense to consider its inverse function Y : s € [0,1] = Y(s) € S
such that for a given s € [0, 1], Y(s) = y where p is the unique solution in S of s = X (u).
Y is depicted in Fig. le.

Equipped with this function Y, we finally construct a path ¢ as follows for s € [0, 1]:

w(§uL, ur), if 0+(E) —6= (=0
®(s;urp;urp) =
o { w(0™(§); uz,ur) + H(i)(W(9+(€);uL,uR) - w(“"(f);uL,uR));
(2.28q)
where for s € [0,1], £ is the solution :
{ §—Ce=p—m
k€ {1,lnac}; (2.28b)
Y(s) = p.

Notice that according to the above construction, a constant intermediate state uj separated
by two waves from the decomposition under consideration reduces to the point ux €
®(.,ur,ur) while two states ux and uz4; separated by a discontinuity (either a shock or
a contact) are connected along ®(.;ur,ur) by a straight line (see Fig. 1f). Indeed for

16



Sk # 0 such that | §+ — 6~ | is not zero within J, there exists an index d € {1, ...,dmax}
such that :

w(@ (£);ur,ur) = w(€7;uL, UR)
w(@H(€)up,ur) = w(E ur,ur), e =H—pr YHESK (2.29)

6+(&) =&

where £ is the location of the dth discontinuity of w(.;ur,ur)-
The case of the rarefaction waves, that is of the states w(§;ur,ur) with ¢ €] — o, €ol
such that 8 (¢) = 6~ (¢) = &, is straightforward.

Now turning to the matrices B*, we set for s € [0,1]

BH(8(siuz,ur)ss) = 5 (07 (€)+ 167 (§) ) - Tds, (2.30a)
B~ (®(s;uL,ur),s) = %(0+(§)- | 6%(€) ) - Idre, (2.300)

where € is the unique solution of the problem stated in (2.28b). Note that the two matrix-
valued functions B defined in (2.30) trivially satisfy the requirement (2.3) for upwind
biasing.

Furthermore, in view of (2.18) satisfied by the approximate solution w(.;ur,ur), we
clearly deduce from (2.29) and definitions (2.28) and (2.30) the compatibility expression:

1 q) . 133 +1
/ (BT + B_)(@(S;uL,UR),S)Q-—(f%;u'QdS = / (E,UL,UR)d§
0 3

Sk; |0+ —8-|=0

dmaz

+ Y Ea(w(€lsuL,ur) - w(€7;ur,ur)) = f(ur) — f(ur)-
d=1
From the construction performed above, the fixed family of paths ® associated with a given
approximate Riemann solver is in fact made of the physical states involved in the wave
decomposition in the zone of smoothness of the approximate solution w{.;ur,ur) while
the matrix-valued functions B return the associated wave velocities. Finally, a straight
line is used to connect in the phase space U two states separated by a discontinuity and
BE are defined thanks to the associated discontinuity velocity. We emphasize that the
family of paths @ and its associated B functions completely depend on the approximate

Riemann solution under consideration, that is on the given FDS method itself.

In Section III, we shall need to make a partition of the path ®(;ur,u r) (2.28) as-
sociated with a given FDS method, into lmaz nonoverlapping subpaths &;(;ur,ur) with
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k € {1,...,lmez}. The kth subpath ék(.;uL,uR) 28 € [Sk,Sk+1] — ék(s;uL,uR) €U is
associated with the kth subinterval Si = [k, pr+1[ of S in the following way. Here s and

Sk+1 in [0,1] are chosen to be

®(sk;ur,ur) = w(ék;ur,ur); P(Sk41;uL,uRr) = W(€k41;uL, UR)- (2.31)
We then define
&)k(s;uL,uR) = ®(s;uL,uRr), S € [Sk,Sk+1)s (2.32)
to rewrite
®(;uL,ur) = Ui":l”ik(.; UL,UR)- (2.33)

For convenience in the notation, we shall make use in the sequel of
®i(s;ur,up) = Sx(sk + s(skq1 — sk);ur,ur), Vse€l0,1], (2.34a)
so that now

®r(0;ur,ur) = w(érxsur,ur), Pr(l;uz,ur)= w(€r+1;vL,uR). (2.34b)

Besides the formal similarity of their expression, the revisited approximate Riemann
solvers are by construction path dependent. Put in other words, their associated numer-
ical flux-function entirely depends on the waves (or field by field) decomposition under
consideration. In turn, the design of such a decomposition is not only responsible for the
merits but also for the deficiencies of the resulting approximate Riemann solver.

Besides robustness, one of the critical issues in the derivation is how to achieve high
resolution of stationary discontinuities while at the same time ensuring enough nonlin-
ear dissipation to select the physically relevant discontinuous solutions. The difficulty in
achieving this goal comes from the fact that entropy violation only occurs for stationary
or near stationary discontinuities associated with the genuinely nonlinear fields.

The current prominent approximate Riemann solvers have been designed to perfectly
resolve a stationary contact discontinuity ([4], [35], [45]) and to yield a sharp steady discrete
shock [4] or to exactly capture a shock ([35), [45]). But associated with this desirable
accuracy, their nature of approximation results in insufficient robustness in calculating
.some practical problems. This is in particular true for the Roe and Collela-Glaz methods
that may fail in the capture of large expansion waves, both admitting nonphysical shocks
as stable solutions. A lack of robustness has been reported for the Osher scheme in the
capture of strong detached shocks [24].
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Pixes have been introduced to cure some of the discussed failures [12], [21], [24], [46],
but at the expense of losing accuracy. These extra mechanisms need to be properly tuned
up either to be efficient or to restore locally some desirable accuracy that was lost by the
uncorrected scheme. This is, in particular, the case of the widely used entropy fix proposed
by Harten [21] which is applied in practice to all the fields of the Roe decomposition in
order to increase the overall robustness of the method. This procedure in turn destroys the
high resolution of the Roe scheme for stationary discontinuities. We stress that the exact
capture of a contact discontinuity at rest is a crucial requirement for the correct resolution
of boundary layers [50], [14] (see also section V).

We now turn to re-express FVS methods in the framework of Definition 1.

I1.2 Flux Vector Splitting (FVS) Methods.

In this section, we study a different and widely used approach for implementing upwind
biasing, namely the FVS methods. The statements given below will underline the deep

differences from the FDS methods we have just revisited in our setting. We first state

Definition 2
Let (f*,f7) be a pair of continuous and piecewise differentiable functions ffU—

RP, required to satisfy the following two conditions
Fru)+ f(u) = (), uweld, (2.35)
and in any region of smoothness

Bt (u) = dft(u) (respectively B~(u) = df ~(u)) s diagonalizable

with real and nonnegative (resp. real and nonpositive) eigenvalues. (2.36)

For any ur aend ug in U, the FVS method defines the numerical fluz-function assoctated
with the pair (f¥,f) to be

flur,ur) = fH(ur) + f~(ur). (2.37)

Remarks

2.4- The exact flux-function f needs not be a homogeneous function of u of degree one
for a consistent FVS method to exist (in the sense of (2.35)), as pointed out in [22].

2 5- In view of the requirement (2.36), the definition of the FVS methods we give is
different from the one originally given in [47] and [22]. However, we stress that all the
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FVS methods that have been brought to our attention, satisfy the condition (2.36) (see
Lerat [29] for the Steger-Warming splitting [47]). Moreover, the Van Leer method satisfies
by construction the above definition while by contrast it does not fall into the framework
for splitting methods proposed in [47)] (see Hirsh [23]). The implications we give of the
Definition 2 will be assessed in what follows (see, in particular, Propositions 2).

As an immediate consequence of Definition 2, we state

Corollary 2

Let be given o general FVS method associated with the pair ( ft,f~). This FVS
method is a (®; BY) method for any given fized family of path ®. Here, B* are the
Jacobian matrices defined by (2.36). The numerical fluz function defined in (2.7) can be

re-expressed as

Fup,ur) = %(f(uf,) +f(ugr) — /0 (B* — B—)(Q(s;u,,,uR))ai’(figTL’i”*—)ds), (2.38)

or under the equivalent form

flur,ur) = %(f(u;,) + f(ur) — Z sign(+1)(f*¥(ur) — fi(uL))) . (2.39)

—1,41

FVS methods therefore fall into our framework for upwind biasing but according to
our formalism, FVS methods are path independent. We stress that by this strong property,
a general FVS method is in complete opposition with the basically path dependent FDS
methods. This deep distinction, as provided by our formalism, will be given a physical
interpretation in the next section devoted to the Euler equations.

Remark

2.6- A formal explanation of the path independence can be given on the basis of the

following two systems of conservation laws :

du | Of(w) _
ot + 9z 0,
Ou  Aft(u) _
ot + or 0,

associated with the following initial data
ur(z), ifz <0,
u(0,z) =
up(z), ifz>0.
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We shall assume, although it is not clear with no further assumption on f and f~, that
both the Riemann problems above admit solutions, repectively denoted by w(.,ur,ur; f~)
and w(.,ur,ur; f¥). Now, in view of Remark 2.1, the averaging (2.5a) applied to
w(.,ur,ur; ) yields at least formally

tir(ug,ug) = uL — %}f(f'(un) — f~(ur)),

since under the requirement (2.36), no wave can propagate outside of the rectangle
(=hz/2,0) x (0,h). Conversely and using again (2.36), we can write for the averaging
(2.5b) but with w(., ur,ur; fT)

. 2h
ip(ur,ur) =R — h—(f+(uR) — fH(ur))-
Notice that the above averaging can be rewritten under the expected forms

ir(ur,ur) = ur — i—z((f_(ua) + fH(ur)) - f(ﬂL))»

(s um) = ur — 2 (Eur) = (F~(ur) + £ (1)),

where we have used the consistency condition (2.35).

The averaging procedures performed above have made no use of the precise wave
patterns involved in w(.;ur,ur; f #). The averaged solutions would have been the same
for any given other wave decompositions, provided that the waves under consideration are
only propagating in their respective relevant rectangle (see requirement (2.36)). The path
independence property stated in Corollary 2, may be understood in that way.

To conclude the present remark, we note that FVS methods can be given at least
formally a Godunov-type interpretation (but in sharp contrast with FDS methods), under
which they make use of two distinct sets of Riemann problem for evaluating the same

numerical flux (cf. in particular Remark 2.8).

Proof of Corollary 2
The path independence property clearly comes from the Jacobian nature of the ma-

trices BE. Indeed, we have for any given fixed family of paths in U

/ 1 B+(q>(s;uL,uR))9‘3(i;sﬁi’?—)ds = f+(ug) — fH(ur), (2.400)
/0 B"(Cb(s;uL,uR))a—-@E;ai;'—ﬁ-@ds = f~(ur) — f(ur). (2.40b)
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Therefore, substituting (2.40a) and (2.40b) in (2.38) clearly gives the expected flux formula
(2.39). Now using the consistency condition (2.35), let us write

f(ur) + f(ur) = (F¥(uz) + F(ur)) + (FF(ur) + £~ (ur))- (2.41)

Formula (2.37) directly follows by substitution in (2.39).
Moreover, by differentiating the consistency relation (2.35), we deduce the following
identity
B*(u)+ B~ (u) = A(u), ae . uc€l, (2.42)

where A is the Jacobian matrix associated with the flux function f. So the compatibility
condition (2.3) stated in Definition 1 is satisfied for any given path ®. This concludes the
proofd

Remarks

2.7- Although the identity B*(u) + B~(u) = A(u) holds true for almost every u in
U, we do not have in general B*(u) = A*(u) and (therefore) B~(u) = A~ (u) for all u
in U (see Steger and Warming [47]). If these equalities were met for all u, the associated
FVS method would be necessarily path dependent since A*(u) are not Jacobian matrices,
except precisely when all the eigenvalues of A(u) keep the same sign. Notice that even for
such u, the equality B¥(u) = A*(u) is not necessarily satisfied. This is, in particular, the
case of the I'-Boltzmann schemes developed in Appendix 2.

2.8- Generally speaking, B*(u) and B~(u) do not commute. As a consequence, they
do not admit the same set of right eigenvectors. In that case, notice that the right eigen-
vectors {ri(u)}1<k<p of A(u) do not diagonalize either B*(u) or B~(u). This property is
indeed responsible for some difficulties in the analysis of general FVS methods.

By contrast with the property stated here, formulae (2.30a) and (2.30b) clearly in-
dicate that the B* matrices do commute for a given FDS method; furthermore, FDS
schemes satisfy an averaged consistency condition (2.16) while FVS methods merely obey
the pointwise consistency condition (2.42). To our knowledge, only the Osher scheme satis-
fies a similar condition (note that Van Leer [49] has recognized the Osher scheme as a FVS
method in the case of a single conservation law; for a closely related result, see Brennier
[2])

These observations further underline the fundamental differences between FVS and
FDS methods.

By the property of independence with respect to path, we have

Proposition 2

A general FVS method in the sense of Definition 2 cannot ezactly capture a stationary

discontinuity.
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Proof of Proposition 2
Let us consider two states 1z and ug connected by a single discontinuity at rest, either
a shock or a contact discontinuity. In view of the averaging (2.5a) and (2.5b), this wave is

exactly captured if and only if
tr(ur,ur) =ur and ﬁR(uL,uR) = uR, (2.43)

which is equivalent to asking for

1 .
/ B+(®(s; uL,uR))ai’(i’g-sEi‘R—)ds =0, (2.44)
0

M M 3 6<I>(t;u ] )
for all path ® connecting uz, to ug. Taking the scalar product of (2.44) with e

and integrating over t € [0, 1], we necessarily have

1 1 . .
0 0 65 5.9

1,1 : - ;
/.‘/0 (8<I>(t,uL,uR)_3‘1’(5sUL’“R))B+(¢,(S;uL’UR))?E(igsiﬁ&)dsdt = 0.(2.45)

ot Os

By assumption, for all u in U, B1(u) only admits nonnegative e